Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions

Authors: John C. Crocker, R. T. Scarlett, Talid Sinno
Publication Date: June 6, 2010
Journal: Journal of Chemical Physics

Citation: R. T. Scarlett, J. C. Crocker, and T. SinnoComputational Analysis of Binary Segregation during Colloidal Crystallization with DNA-mediated Interactions, Journal of Chemical Physics, 132 (2010) 234705 1-11.

Download

Abstract: A detailed computational study of compositional segregation during growth of colloidal binary solid-solution crystals is presented. Using a comprehensive set of Metropolis Monte Carlo simulations, we probe the influence of colloid size, interaction strength, and interaction range on the segregation process. The results are interpreted in terms of a simple, but descriptive mechanistic model that allows us to connect to studies of binary segregation in atomic systems. The validity of Metropolis Monte Carlo simulations for the nonequilibrium phenomena investigated in this work is established theoretically and by connections to Brownian dynamics and molecular dynamics simulations. It is demonstrated that standard Metropolis Monte Carlo, properly applied, can provide an efficient framework for studying many aspects of crystallization in colloidal systems.